
The Impact of Extension Headers on IPv6
Access Control Lists
Real-Life Use Cases

Antonios Atlasis
aatlasis@secfu.net

Abstract
Traffic filtering using Access Control Lists (ACLs) is a fundamental functionality not only of
security devices (like firewalls) but also of networking ones, like routers and layer-3 switches.
Enterprise networks, from Internet Service Providers to medium business ones enhance their
defence in-depth strategy by employing ACLs in such devices. Unwanted traffic is prevented from
routing by using the appropriate ACLs, while the access of management or other interfaces and
services are protected using ACLs too. Although this used to be an effective approach in the IPv4
era, this is not the case in IPv6 (by the way, did you know that more than 75% of the transit
Autonomous Systems in Western Europe advertise IPv6 prefixes as of July 2015, with some
countries reaching even 90%?).

While a decent amount of research have been performed the last few years concerning IPv6 security
implications focusing mainly on local area networks, this is not the case regarding its impact on
infrastructure (core) IP networks (for instance, if and how BGP is affected by IPv6 new
functionalities?). This talk will fill this gap by demonstrating live how the ACLs of enterprise
layer-3 devices of different major vendors (Cisco and Hewlett Packard to name a few) can be
circumvented by exploiting IPv6 protocol functionalities using publicly available tools. It should be
noted that this is not a vendors' issue, but rather a protocol design one. Due to this reason, even
additional security measures taken by some vendors are finally proven to be inefficient.

Finally, the analysis of the root cause of the problem will allow us to reach our final goal: to
propose very specific mitigation techniques, both in terms of device implementation (so as to
protect our networks in short-term), but also regarding the philosophy of the Internet protocol itself
and how this should be changed in the long run.

Keywords: Access Control Lists, Routers, IPv6 Extension Headers, infrastructure networks.

The Impact of Extension Headers on IPv6
Access Control Lists
Real-Life Use Cases

Antonios Atlasis
aatlasis@secfu.net

1 Introduction
Routers are definitely the most significant internetworking devices in today's IP networks and
Access Control Lists (ACLs) a core functionality of them. ACLs refer to a list of rules applied to IP
addresses and networks, protocols (mainly layer-4 ones) and to some of their fields (e.g. port
numbers). They can generally be configured to control either inbound or outbound traffic, or both,
and in this context they are similar to firewalls. As such, they are subject to security regulations and
standards.

Enterprise networks, from Internet Service Providers to medium business ones enhance their
defence in-depth strategy by employing ACLs in such devices. Unwanted traffic is prevented from
routing by using the appropriate ACLs, while the access of management or other interfaces and
services are protected using ACLs too. Although this used to be an effective approach in the IPv4
era, this is not the case in IPv6

Layer-3 core networks have been changing the last few years due to the operational deployment of
IPv6 from several Internet Service Providers (ISPs) worldwide. According to Cisco Labs
measurements, as of July of 2015, the IPv6 transit Autonomous Systems1 (AS) are more than 75%
in Western Europe, with some countries reaching even 90%2 (figure 1). These measurements are
quite similar regarding other countries, especially North American ones.

1 IPv6 Transit AS: An Autonomous System (AS) that is Transit (gives Transit service to another AS) on both IPv6
and IPv4 networks.

2 http://6lab.cisco.com/stats/

http://6lab.cisco.com/stats/

Figure 1: IPv6 Transit Autonomous Systems in Western Europe.

While a decent amount of research have been performed the last few years concerning IPv6 security
implications, mainly on local area networks, this is not the case regarding its impact on backbone
(core) IP networks (for instance, how BGP would be affected if ACLs become ineffective?). Hence,
examining the effectiveness of the ACLs when IPv6 is used is crucial for today's core networks. The
assumption that it should be the same as under IPv4 is rather naive given the new layer-3
functionalities that IPv6 introduces, as for example the so called IPv6 Extension headers.

This study will fill this gap by demonstrating how the ACLs of enterprise layer-3 devices of
different major vendors can be circumvented by exploiting IPv6 protocol functionalities using
publicly available tools. It should be noted that this is not a vendors' issue, but rather a protocol
design one. Due to this reason, even additional security measures taken by some vendors are finally
proven to be inefficient.

By analysing the root cause of the problem we will be able to propose very specific mitigation
techniques, both in terms of device implementation (so as to protect our networks in short-term),

but also regarding the philosophy of the Internet protocol itself and how this should be changed in
the long run.

2 The Significance of ACLs in Infrastructure Networks
To underline the importance of ACLs in the protection of infrastructure devices and networks, let's
check the recommendations made publicly by one of the major vendors, Cisco. Specifically, Cisco
suggest that “in an effort to protect routers from various risks—both accidental and malicious—
infrastructure protection ACLs should be deployed at network ingress points. These IPv4 and IPv6
ACLs deny access from external sources to all infrastructure addresses, such as router interfaces.
At the same time, the ACLs permit routine transit traffic...” [4].

But let's do it more specfic. At the same web site, specific ACL examples are suggested both for
IPv4 and IPv6 traffic. Let's have a look at the IPv6 ACL example (figure 2).

Figure 2: An ACL configuration example of an infrastructure router is recommended in [4]

The significant observation on the above list is that the final rule has to be a default allow one. As it
is explained in [4], “the final line in the infrastructure ACL explicitly permits transit traffic: permit
ip any any for IPv4 and permit ipv6 any any for IPv6. This entry ensures that all IP protocols are
permitted through the core and that customers can continue to run applications without issues”.
This is the main difference of ACLs between routers (or layer-3 switches) and firewalls, where the
final rule should be a “default deny).

It is this “default allow” rule in the ACLs of the routers which, allow us, in combination with other
issues, to circumvent such ACLs.

3 IPv6 Extension Headers
It is beyond the scope of this paper to describe IPv6 Extension headers; for a very good summary of
them the reader is advised to read ref. [1], and for more details, RFC 2460 [2]. For reasons of
completeness of this paper, a very brief introduction of them is given below.

A generic structure of an IPv6 datagram is displayed in figure 3. Specifically, each IPv6 datagram
can have zero, one or more IPv6 Extension headers.

Figure 3: Structure of an IPv6 datagram

Some of the most common of the IPv6 Extension headers are the Hop-by-Hop Extension header
(which MUST be processed by intermediate routers), the Destination Options header (which can
occur twice), the Routing header, etc.

In case of fragmentation (which is also accomplished using an Extension header, the so called IPv6
Fragment Extension header), each fragment can carry zero, one or more IPv6 Extension headers in
its unfragmentable part, in its fragmentable part or in both (figure 4).

optional

IPv6 Header

Next Header value =
Extension Header 1

Extension Header
1

Next Header value
= Extension

Header 2

... Extension
Header n

Next Header
value = Layer 4

Header

Layer 4
protocol
header

Layer 4
Payload

Multiple
of 8-octets

Multiple
of 8-octets

Figure 4: An example of an IPv6 Fragmentation

The combination of fragmentation and the usage of IPv6 Extension headers in the fragmentable part
of the fragments can result in “moving” the layer-4 protocol (e.g. TCP) to a fragment other than the
1st one. This is one of the key issues which can be exploited to evade ACLs.

4 Performed Tests and Results

4.1 Lab Set-Up and Tools
We run several tests against different devices of several vendors, both high-end and low-end ones.
To this end, several representative scenarios from enterprise environments or other potential ones
were examined. We are going to present our results for three such vendors, because they are
probably some of the most well-known ones of such devices:

a) Cisco.

b) Hewlett-Packard.

c) Alcatel.

What we want to underline through is the “nature” of the problem and not to make it to specific to a

Unfragmentable part Fragmentable part

Unfragmented packet

Fragment 1

IPv6 header + some of the
extension headers

Unfragmentable part Fragment
Header

Fragment 2Unfragmentable part Fragment
Header

Fragment 3Unfragmentable part Fragment
Header

time

bunch of vendors. This will help the community (and hopefully, the IETF) to focus on the problem
and try to solve it properly.

Without loss of generality, a set-up with one router is displayed. However, the results that will be
demonstrated are valid in the common case where two or more results are present.

The lab set-up is displayed below:

Figure 5: The lab diagram

The tool used to launch the attacks is Chiron [3], a public available open-source one based on
Python and Scapy offering several advanced IPv6-related functionalities.

In the rest of this section, some specific test cases will be examined and discussed.

4.2 Case Study 1: Cisco
As far as Cisco router is concerned, its exact version used in our examples is displayed in the below
“show version” output:

Router>show version

Cisco IOS Software, C1900 Software (C1900-UNIVERSALK9-M), Version 15.4(3)M, REL)
Cisco CISCO1921/K9 (revision 1.0) with 491520K/32768K bytes of memory.

The testing scenarios that were examined are the following:

4.2.1 Use-Case A: SSH is Blocked and Any Other IPv6 Connection is
Allowed (Default Allow)

Based of the common case that the configuration of routers (either infrastructure or not) regarding
ACLs, as explained in Section 2, is based on a default allow rule, in this case we block a specific
service (as for example SSH) and we allow any other IPv6 connection. This is a common scenario
in enterprise environments where we want to restrict access to sensitive services running to the
device itself or behind a device, like SSH, while all the other traffic is allowed. An output of the

Attacker Router Target2001:db8:1:1::/64 2001:db8:1:2::/64

ACL configuration is given below.

Router#show ipv6 access-list

IPv6 access list protect_infrastructure
 deny tcp any any eq 22 sequence 10
 permit ipv6 any any sequence 20

In this case, the attacker’s goal is to reach the target’s SSH port as well as the SSH port of the router
itself. This can be achieved by using the following generic way:

Figure 6: An example of an ACL Evasion technique

In the above figure, the “Other Extension Header” can be:

1. When the target is an Operating System like Linux, a Destination Options header, a Hop-by-
Hop header, a Routing header (even a Type-0 one), or another Fragment Extension header
(with offset=0 and the M-bit unset).

2. When the target is the router itself, all of the above but the Hop-by-Hop header. This is due
to the fact that according to RFC 2460 the Hop-by-hop header MUST immediately follow
the IPv6 main header, which is not the case here; it seems that Cisco IOS respects this
recommendation and does not process packets when the Hop-by-hop header does not
immediately follow the IPv6 main header. However, all the rest (Routing header, Destination
Options header, or even Fragment header) can be used successfully.

One of the possible Chiron commands that can be used to replicate such an attack, is the following:

./chiron_scanner.py enp7s03 -d 2001:db8:1:2:be5f:f4ff:fede:d90d -gw 2001:db8:1:1::1 -sS -p 22
-lfE 60 -nf 2

A screenshot of a Wireshark capture that demonstrates the aforementioned attack is displayed
below.

3 enp7s0 is the network interface we use in our system.

http://www.insinuator.net/wp-content/uploads/2015/01/headers1.png

Figure 7: A Wireshark screenshot of the aforementioned attack

4.2.2 Use-Case B: A Hop-by-Hop Header is Allowed and a Default Deny
Rule is Used

In this case we assume that there is a default deny rule but packets with a Hop-by-Hop header are
allowed. An example of such an ACL is displayed below.

IPv6 access list myrule2

 permit hbh any any (1 match) sequence 10
 deny tcp any any eq 22 (1 match) sequence 20

The goal of the attacker is to reach any service (like SSH) which is nevertheless blocked by the
default deny rule. This can be used by:

1. Adding a Hop-by-Hop header and leaving the IPv6 datagram unfragmented.

The corresponding Chiron command is the following:

./chiron_scanner.py enp7s0 -d 2001:db8:1:2:5a55:caff:fe24:933d -gw 2001:db8:1:1::1 -sS -p 22
-lfE 0

Figure 8: Adding a Hop-by-Hop header and leaving the IPv6 datagram unfragmented.

2. Adding a Hop-by-Hop header and splitting the IPv6 datagram in two (2) fragments.

The corresponding Chiron command is the following:

http://www.insinuator.net/wp-content/uploads/2015/01/CiscoACL-evaded.png
http://www.insinuator.net/wp-content/uploads/2015/01/headers2.png

./chiron_scanner.py enp7s0 -d 2001:db8:1:2:5a55:caff:fe24:933d -gw 2001:db8:1:1::1 -sS -p 22
-lfE 0 -nf 2

Figure 9: Adding a Hop-by-Hop header and splitting the IPv6 datagram in two (2) fragments.

4.2.3 Use-Case C: Permit a Specific Service Explicitly Combined with an
Extension Header and Use a Default Deny Rule

In this case, if we want to allow a specific service (as for example WWW) as well as the use of an
Extension header like Hop-by-Hop, we define such a ruleset that tights the use of this extension
header with the specific service. Example:

IPv6 access list myrule4

 permit tcp any any eq www sequence 10
 permit tcp any any eq www hbh sequence 20

In the above example, a) we allow the use of www and b), we also allow the use of Hop-by-Hop
Extension header (hbh) with www, but without allowing hbh on each own. The goal of the attacker
is again to reach a service, like ssh, which otherwise is forbidden.

The above approach seems to work quite well (it cannot be evaded), but it creates a few problems.

First, these combinations must be repeated for all the services that we want to allow, as well as for
all the corresponding Extension headers. This makes the management of the ACL more difficult
than usually.

Secondly, it creates some false alarms. For instance, if we add a Destination Options Header and
fragment it in two fragments, these are blocked even when we try to reach the www service. The
corresponding Chiron command for such a case is the following:

./chiron_scanner.py enp7s0 -d 2001:db8:1:2:5a55:caff:fe24:933d -gw 2001:db8:1:1::1 -sS -p 80
-luE 0 -lfE 60 -nf 2

The same is also true if we just fragment an IPv6 datagram which includes a Hop-by-Ho header:

./chiron_scanner.py enp7s0 -d 2001:db8:1:2:5a55:caff:fe24:933d -gw 2001:db8:1:1::1 -sS -p 80
-lfE 0 -nf 2

The packets created by the above command are fully legitimate and hence, they should not be
dropped.

http://www.insinuator.net/wp-content/uploads/2015/01/headers3.png

4.3 Case Study 2: Hewlett Packard
Similar tests were performed against Hewlett Packard layer-3 devices. As an example, an HP A5800
JC100A layer-3 switch is used.

4.3.1 Use-Case A: SSH is Blocked and Any Other IPv6 Connection is
Allowed (Default Allow)

This is similar to use-case A of case study 1. Specifically, due to the nature of switches, the default
allow policy should be expected. Hence, we will test the scenario were we want to block a specific
service (e.g. ssh) from specific port(s). The tested configuration is the following:

[HP]display packet-filter all
 Interface: GigabitEthernet1/0/1
 In-bound Policy:
 acl6 3002, Successful
 Out-bound Policy:
 Interface: GigabitEthernet1/0/2
 In-bound Policy:
 acl6 3001, Successful
 Out-bound Policy:

[HP]display acl ipv6 all
 Advanced IPv6 ACL 3001, named -none-, 1 rule,
 ACL's step is 5
 rule 0 deny icmpv6 icmp6-type router-advertisement
 Advanced IPv6 ACL 3002, named -none-, 1 rule,
 ACL's step is 5
 rule 0 deny tcp destination-port eq 22

In our tests, after confirming that ssh is really blocked in normal IPv6 traffic, we used Chiron to add
some IPv6 Extension Headers. It was found out that by adding at least three (3) Extension headers,
the ACL is evaded (TCP SYN SSH packet reaches the target). In this scenario there was no need for
fragmentation. Three IPv6 Extension headers were more than enough to circumvent the ACL.

4.3.2 Use-Case B: A Hop-by-Hop Header is Allowed and a Default Deny
Rule is Used

This is similar to use-case B of case study 1. The configuration of the HP layer-3 switch used for
these tests is as follows:

[HP]display packet-filter all
 Interface: GigabitEthernet1/0/1
 In-bound Policy:
 acl6 3003, Successful

 Out-bound Policy:
 Interface: GigabitEthernet1/0/2
 In-bound Policy:
 acl6 3001, Successful
 Out-bound Policy:

[HP]display acl ipv6 all
 Advanced IPv6 ACL 3001, named -none-, 1 rule,
 ACL's step is 5
 rule 0 deny icmpv6 icmp6-type router-advertisement
 Advanced IPv6 ACL 3002, named -none-, 5 rules,
 ACL's step is 5
 rule 0 deny tcp destination-port eq 22
 rule 1 deny 60
 rule 2 deny 43
 rule 3 deny 0
 rule 4 deny 44
 Advanced IPv6 ACL 3003, named -none-, 3 rules,
 ACL's step is 5
 rule 0 permit tcp destination-port eq 22
 rule 1 permit 0
 rule 10 deny ipv6

Using the above rules, ssh and Hop-by-Hop Extension Headers are allowed, whilst all the other
traffic is blocked (default deny).

Once more, the results showed that this ACL can easily be evaded by adding just a Hop-by-Hop
Extension header, as expected.

4.4 Case Study 3: Alcatel
Similar tests were performed against Alcatel routers. Let's examine some of the use-cases.

4.4.1 Use-Case A: SSH is Blocked and Any Other IPv6 Connection is
Allowed (Default Allow)

Again, in this scenario the Access Control List (ACL) of therouter was configured to block some
very specific traffic (ssh, for instance), while all the rest of the traffic was allowed. The goal was to
pass the specifically forbidden traffic and reach the target. The ACL configuration is as follows:

A:Alcatel>config>filter# info
--
 ipv6-filter 3 create
 default-action forward
 description "Block SSH via IPv6"
 scope exclusive

 entry 10 create
 match next-header tcp
 dst-ip 2001:db8:1:1::/64
 dst-port eq 22
 tcp-syn true
 exit
 action drop
 exit
 exit

Against such a configuration, at least the following two different evasion techniques were found to
be effective:

1. Adding six (6) IPv6 Extension Headers (e.g. Destination Option Headers) in an
unfragmented IPv6 datagram. Note: Such packets are accepted by various OS, despite the
fact that according to RFC 2460 [2] the recommended number of Destination Options
headers is two (2). Nevertheless, we could also use different types of IPv6 Extension
Headers to fully comply with RFC 2460.

2. Add only one (1) Extension Header (e.g. a Destination Option Header) and split the
datagram in two fragments.

4.4.2 Use-Case B: A Hop-by-Hop Header is Allowed and a Default Deny
Rule is Used

This is the same use use-cases B of the previous cases studies. In this scenario we assume that an
ISP must support a Hop-by-Hop Extension Header, which nevertheless, when present, must be
processed by all nodes along the route to the final destination. On the other hand, we block all the
rest (default:deny).

The following ACL configuration was used:

A:Alcatel>config>filter# info
--
 ipv6-filter 3 create
 description "Allow fragmentation and icmpv6 - Block the rest"
 scope exclusive
 entry 7 create
 match
 hop-by-hop-opt true
 exit
 action forward
 exit
 entry 9 create
 match next-header ipv6-icmp
 exit
 action forward
 exit
 exit

Notes:
1. When a default-action is not explicitly defined, this is a deny one.

2. The entry no 9 (which allows ICMPv6) was added to allow the Neigbor Discovery (ND)
process to take place. This did not affect our testing because ICMPv6 was not employed by
any means on them.

The following evasion technique was proven to be effective under this scenario.

A specific TCP port number at the target can be reached (e.g. TCP port 22 – ssh) if a Hop-by-Hop
Extension Header is added to the datagram (without performing fragmentation).

This approach is also so generic that we do not actually need any additional technique.

Furthermore, this technique can also be expanded using any other IPv6 Extension header or a
combination of them, added in the allowed list of the corresponding ACL.

4.4.3 Use-Case C: Allow Fragmentation and Block All the Rest

In this scenario we assumed that an ISP must support and provide fragmentation capabilities to its
customers. So, we allow fragmentation and we block all the rest (default:deny).

The following ACL configuration is used:

A:Alcatel>config>filter# info
--
 ipv6-filter 3 create
 description "Allow fragmentation and icmpv6 - Block the rest"
 scope exclusive
 entry 8 create
 match
 fragment true
 exit
 action forward
 exit
 entry 9 create
 match next-header ipv6-icmp
 exit
 action forward
 exit
 exit

Notes:
1. When a default-action is not explicitly defined, this is a deny one.
2. The entry no 9 (which allows ICMPv6) was added to allow the Neigbor Discovery (ND)

process to take place. This did not affect our testing because ICMPv6 is not “exploited” by
any means during our tests.

The following evasion technique were proven to be effective under this scenario.

Any TCP port number at the target can be reached (e.g. TCP port 22 – ssh) if the datagram is simply
split in two fragments (without adding any Extension Header). Of course, this technique can also
be used against other ports or protocols which are explicitly blocked (e.g. TCP port 80, etc.). This
approach is so generic that we do not actually need any additional technique.

4.4.4 Use-Case D: Blocking No Next Headers

This scenario is actually the same with use-caseA with the exception that we also add the following

ACL rule:

 match next-header ipv6-no-nxt

The rest is the same with the rules described in use-case A. Hence, in this case the used ACL is
configured as following:

 ipv6-filter 4 create
 default-action forward
 description "Block SSH - Allow the Rest"
 scope exclusive
 entry 10 create
 match next-header tcp
 dst-ip 2001:db8:1:1::/64
 dst-port eq 22
 tcp-syn true
 exit
 action drop
 exit
 entry 11 create
 match next-header ipv6-no-nxt
 exit
 action drop
 exit
 exit

The results of this scenasrio are exactly the same with the ones obtained in use-case A. This means
that we can easily evade the aforementioned ACL by using:

1. An unfragmented datagram with six (6) or more IPv6 Extension headers in each packet, or
2. Adding just one (1) IPv6 Extension header and splitting the datagram (including this

Extension header) in two (2) or more fragments.

4.4.5 Use-Case E: Blocking No Next Headers and Using Cpm Hw Filters

In this scenario we also add the following ACL:

*A:Alcatel>config>sys>sec>cpm>ipv6-filter# info
--
 entry 1 create
 action drop
 description "drop ssh"
 match next-header tcp
 tcp-syn true
 exit
 exit
 entry 2 create
 action drop
 match next-header ipv6-no-nxt
 exit
 exit

 no shutdown

The results showed, once again, that the device could also be evaded by using exactly the same
techniques.

5 Root Cause of the Problem and Consequences
The root cause of the problem is the combination of the facts that:

a) The insertion of IPv6 Extension headers, which takes place before the layer-4 one, moves
backward the later. We have encountered cases where for instance three or more Extension headers
in a row are more than enough to evade ACLs even without using fragmentation.

b) When one or more IPv6 Extension headers are fragmented, layer-4 header can be moved to a
fragment other than the first.

c) Routers (and layer-3 switches) are devices which, due to their role, cannot perform deep packet
inspection. They are meant not to store traffic but forward it as fast as possible; to make matter
worse, speaking from the RFC point view, they are not supposed to examine any Extension header
but the Hop-by-Hop one (if present) which, nevertheless, must not be fragmented.

The consequences of the above are rather obvious. ACL evasion is possible under some scenarios.
From the ISP point of view is even more difficult because they are meant not to block any
Extension headers (this is a decision that must be taken by the end users, usually they customers,
either enterprise or home users). Hence, any protection mechanism based on ACLs is actually
cancelled under IPv6. ACL circumvention may not lead to a device compromise itself, but it allows
the launch of attacks against them which otherwise would be impossible (e.g. brute-forcing of an
otherwise unreachable service like ssh). Similar security implications are also possible for core
(infrastructure) protocols like BGP.

6 Mitigation Techniques
Although the configuration of Case C mentioned in Section 2 can be used to block effectively
evasion attacks as long as it is done properly, its complexity, which increase significantly with the
necessity of adding more rules, may make it not that a feasible solution. Hence, the best approach
seems to be the blocking of IPv6 fragmentation.

6.1 RFC 7112 (Undetermined Transport) Implementation – Oh,
really?

A way of mitigating the risk of fragmented Extension headers and moving the layer-4 header at the
second fragment, officially suggested by Cisco themselves, is to use the “undetermined transport“
feature. This actually implements RFC 7112 [5] which actually recommends (but not strictly
speaking) the blocking of fragments when layer-4 header is not in the first fragment. In this case,
the corresponding ACL is modified as following:

IPv6 access list protect_infrastructure
deny ipv6 any any log undetermined-transport sequence 10

deny tcp any any eq 22 log sequence 20
permit ipv6 any any sequence 30

Such an ACL works effectively. It blocks access to ssh as well as any packets when layer-4 header
is not included in the first fragment.

So, problem solved?

Well, not really. There’s some additional remarks and lessons (to be learned) from our side here:

a) First of all it has to kept in mind that “undetermined-transport” has its own flaws too. In the
Cisco “First Hop Security” Wiki4 it’s nicely stated: “Some platforms may not support acl keyword
“undetermined-transport”. In that case they may either reject the command altogether, act
erratically on such ACLs, or refuse to accept the ACL on the interface” and we have seen this exact
thing happening: We have experienced major problems in some high-end switches where even fully
legitimate traffic is actually dropped after enabling undetermined-transport; this is what they mean
by “act erratically”?

b) The potentially complex nature of IPv6 packets requires that stateless security controls have to be
verified as for their actual security benefit and have to potentially “enhanced” by tweaks previously
unknown in the IPv4 world (like “undetermined-transport”).

c) Overall, this means that going for full IPv6 security is not about “feature parity” but about
“identifying the right features/controls for the task”, carefully taking IPv6 specifics into account.

Finally, there were cases, like the Hewlett-Packard case study, where fragmentation is not required
to evade its ACLs. In such a case, even if RFC 7112 is successfully implemented, this is not enough
to stop ACL circumvention of these devices.

6.2 Blocking Extension Headers Explicitly
One approach is to explicitly block all IPv6 Extension headers (or most of them, e.g. allowing just a
Hop-by-hop header in the unfragmentable part may not hurt but this must be carefully tested
depending on the environment and the specific implementation).

In the Cisco world, to block a specific Extension header, we can use a rule like the following:

deny 43 any any

This rule blocks packets that include a Routing header (next header value = 43). We should repeat
similar rules for all known Extension headers, i.e. to block packets which include a Destination
Options header, we should add:

deny 60 any any

and so on. However, the following rule is not enough to forbid fragmentation:

deny 44 any any

Although the next header value of the Fragment header is 44, this rule seems to be effective only
when we encapsulate a Fragment Header in another fragment. To totally block IPv6 fragmentation

4 http://docwiki.cisco.com/wiki/FHS#.22undetermined-transport.22_keyword_support_on_various_platforms

http://docwiki.cisco.com/wiki/FHS#.22undetermined-transport.22_keyword_support_on_various_platforms

in the Cisco world, we should add:

deny ipv6 any any fragments

This last rule blocks IPv6 fragmentation completely and even on each own, it should be more than
enough to block most of the attacks against Cisco routers.

Similarly, in the Hewlett-Packard world, a configuration like the following can be used:

Given that NOT ALL IPv6 Extension Headers are available for blocking directly by HP devices,
(just Hop-by-Hop, IPv6-Authentication Header, IPv6 Encapsulating Security Payload and
fragmentation), which is NOT enough to mitigate the aforementioned risk, we will try to use
protocol numbers to achieve it. For instance:

rule 1 deny 60 => mitigates attack when 3 DestOpt are used, but not when one HbH and 2
DestOpt are used

Hence, to be effective, ALL IPv6 Extension Headers MUST be blocked explicitly by using the
corresponding protocol numbers. An example is given below:

[HP]display acl ipv6 all
 Advanced IPv6 ACL 3002, named -none-, 5 rules,
 ACL's step is 5
 rule 0 deny tcp destination-port eq 22
 rule 1 deny 60
 rule 2 deny 43
 rule 3 deny 0
 rule 4 deny 44
...etc

The question is whether an ISP is allowed to do that and hence, remove all this IPv6 characteristics
from its clients.

7 Conclusions
In this study it has been shown that IPv6 Extension headers and fragmentation, if abused “properly”
by attackers, can be used to evade the Access Control Lists (ACLs) of networking devices, like
routers and layer-3 switches, provided a certain configuration is present (which from our
observations is a quite common case, if not unavoidable). ACLs are one of the measures taken in
infrastructure routers for their protection as well as the protection of core networks and services and
hence, their potential evasion can have a significant security impact on them. Mitigation techniques
do exist but they are either not mature enough to offer the “silver bullet” against the problem, or
they are just “quick and dirty” approaches. Thus, deep knowledge and careful testing and
configuration is required per-case by the network administrators so as to enable IPv6 in their
networks whilst protecting their assets from such attacks. Finally, it seems that some of the core
characteristics of IPv6 must be reconsidered by IETF to make IPv6 more robust and less susceptible
to related attacks. RFC 7112 is certainly a good step towards this direction but it was shown that it
is not always enough, mainly due to implementation issues.

References
[1] Atlasis, A., Rey, E. and Schaefer, R., “Evasion of High-End IDPS Devices at the IPv6 Era”,
BlackHat EU 2014, October 16-17, Amsterdam.

[2] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460,
December 1998.

[3] A. Atlasis, “Chiron - An all-in-one IPv6 Pen Testing Framework”, downloaded from
http://www.secfu.net/tools-scripts/

[4] Cisco, “Protecting Your Core: Infrastructure Protection Access Control Lists”, Document ID:
43920, retrieved from http://www.cisco.com/c/en/us/support/docs/ip/access-lists/43920-iacl.html in
12th July 2015.

[5] F. Gont, V. Manral, R. Bonica, “Implications of Oversized IPv6 Header Chains”, RFC 7112,
January 2014.

[6], Cisco, “FHS: First Hope Security”, retrieved from http://docwiki.cisco.com/wiki/FHS in 12th
July 2015.

http://docwiki.cisco.com/wiki/FHS
http://www.cisco.com/c/en/us/support/docs/ip/access-lists/43920-iacl.html
http://www.secfu.net/tools-scripts/

	Abstract
	1 Introduction
	2 The Significance of ACLs in Infrastructure Networks
	3 IPv6 Extension Headers
	4 Performed Tests and Results
	4.1 Lab Set-Up and Tools
	4.2 Case Study 1: Cisco
	4.2.1 Use-Case A: SSH is Blocked and Any Other IPv6 Connection is Allowed (Default Allow)
	4.2.2 Use-Case B: A Hop-by-Hop Header is Allowed and a Default Deny Rule is Used
	4.2.3 Use-Case C: Permit a Specific Service Explicitly Combined with an Extension Header and Use a Default Deny Rule

	4.3 Case Study 2: Hewlett Packard
	4.3.1 Use-Case A: SSH is Blocked and Any Other IPv6 Connection is Allowed (Default Allow)
	4.3.2 Use-Case B: A Hop-by-Hop Header is Allowed and a Default Deny Rule is Used

	4.4 Case Study 3: Alcatel
	4.4.1 Use-Case A: SSH is Blocked and Any Other IPv6 Connection is Allowed (Default Allow)
	4.4.2 Use-Case B: A Hop-by-Hop Header is Allowed and a Default Deny Rule is Used
	4.4.3 Use-Case C: Allow Fragmentation and Block All the Rest
	4.4.4 Use-Case D: Blocking No Next Headers
	4.4.5 Use-Case E: Blocking No Next Headers and Using Cpm Hw Filters

	5 Root Cause of the Problem and Consequences
	6 Mitigation Techniques
	6.1 RFC 7112 (Undetermined Transport) Implementation – Oh, really?
	6.2 Blocking Extension Headers Explicitly

	7 Conclusions
	References

